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1 Antiferromagnetic Dirac band crossings

Spin-orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated inde-
pendently about a decade ago. Here we demonstrate that Dirac quasiparticles can be controlled
by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet, using CuMnAs and
MnyAu as examples [I, 2]. We identify the non-symmorphic crystal symmetry protection of Dirac
band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict
that this concept, verified by density functional calculations in the CuMnAs and MnyAu, can lead to
a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic
magnetoresistance.

1.1 Topological metal-insulator transition and anisotropic magnetoresistance in
CuMnAs

We performed full-potential relativistic ab initio calculations of the electronic structure of CuMnAs,
as implemented in FLEUR and ELK packages. The exchange correlation potential is parametrized
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Figure 1: (a) Crystallographic and magnetic structure of the tetragonal CuMnAs. Atom-resolved (b)
density of states with semi-metallic pseudogap, and (c¢) band structure without SOC within GGA.
GGA+U shows DPs position shifts. Colors correspond to the atomic colors in (a). Electric control
by the Néel SOT of the 3D band dispersion around nodal line along the k, = m BZ sub-manifold
calculated by GGA+SOC, which is (d) protected for n|[100] by glide mirror plane, (e) gapped for
n|[110]. a = b # c are the lattice constants. (f) Cut along the XMY line through the nodal lines at
different energies.

by the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) [3]. The full crystal of
tetragonal CuMnAs, including also the Cu and As atoms, is shown in Fig. 1(a) [4, 5]. Results without
spin-orbit coupliong (SOC) are summarized in Figs. 1(b),(c). They show the semimetallic character
with the dip in the density of states near the Fermi level and numerous band crossings. Note that
their position is sensitive to the computational details; as an illustration we plot in Fig. 1(c) shifted
bands obtained in the GGA+U approximation with the correlation potential U = 3 eV. When SOC is
included in the ab initio calculations and the Néel vector n||[100], protected nodal lines are obtained
in the k, = £7 planes, as illustrated in Figs. 1(d). The nodal lines have the open geometry. The
protection is due to the non-symmorphic glide mirror plane G, symmetry. Instead of assigning the
G. eigenvalues in the complex ab initio band structure, we verify this by excluding all other relevant
symmetries as the origin of the protection. For n [|[100], the space group P4/nmm of the tetragonal
CuMnAs lattice reduces to eight symmetry elements: Identity, non-symmorphic glide planes G,, and
g, = {MZ]%%O}, screw-axis Sy:{CQy‘O%O}, and four PT conjugated symmetries. By rotating the Néel
vector to n||[110] and n||[101], G, and S, remain symmetries of the AF crystal, respectively. In both
cases, however, the nodal lines become gapped, as illustrated in Fig. 1(e), excluding the protection by
these symmetries. Note that the G, protection makes our tetragonal CuMnAs AF distinct from the
earlier identified non-symmorphic protection in paramagnetic ZrSiS [6].

The field-like Néel SOT in the full tetragonal crystal of CuMnAs allows for the current-induced
rotation of the Néel vector [7]. This opens the prospect of electric control of Dirac crossings in an
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Figure 2: (a) Crystallographic and magnetic structure of the orthorhombic CuMnAs with Néel SOT
spin-polarization ds for the current J||[100]. Atom-resolved (b) point-semimetal density of states, and
(c) band structure without SOC within GGA. GGA+U shows DPs position shifts. (d-e) Topological
MIT. Manipulation of the Dirac fermions along the (f) I'X, (g) XU, and (h) ZX axis (units d = v a? + ¢?
with @ # ¢ being the lattice constants) by the Néel SOT from GGA+SOC calculations reveals:
topological (n||[001]), and ”trivial” Dirac semimetal (n||[100]), and semiconductor (n||[101]).

experimentally relevant AF material. However, the tetragonal CuMnAs is not optimal for observing
the corresponding topological metal-insulator transition (MIT) due to other non-Dirac bands present
around the Fermi level (see Fig. 1(c)). These can be removed, e.g., by lowering the lattice symmetry
from tetragonal to orthorhombic, as we discuss below.

The non-symmorphic Pnma primitive cell of the orthorhombic CuMnAs is shown in Fig. 2(a). It
has four Mn sites consisting of the two inversion-partner pairs A-B and A’-B’. From the symmetry
analysis of the current-induced spin-polarizations generated locally at these four sites we obtain that
they contain components which are commensurate with the AF order: A and A’ sites with one sign
of the current-induced spin-polarizations belong to one AF spin-sublattice and B and B’ sites with
the opposite sign of the current-induced spin-polarizations belong to the opposite AF spin-sublattice.
This makes the Néel SOT efficient for reorienting AF moments in orthorhombic CuMnAs.

GGA electronic structure calculations without SOC are shown in Fig. 2(b),(c). The density of
states vanishes at the Fermi level and we now discuss the properties of the three Fermi level Dirac
points (DPs) seen in Fig 2(b),(c). Without SOC they are part of an ungapped nodal line in the
ky = 0 plane [8]. In the presence of SOC and for n|| [001], the DPs along the I'X and ZX axes become
gapped. The gap opening applies to the entire nodal line, except for the DP along the XU axis (and
also X'U), as shown in Figs. 2(d),(f)-(h). Using the same method as in the ab initio calculations for
the tetragonal CuMnAs, we identified that the XU DP protection is due to the screw-axis symmetry
S. = {C5:|301} [8]. The corresponding state at nl|[001] is then a topological AF Dirac semimetal
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with the positive topological charge of the XU DP. For n||[101], all DPs (the entire nodal line) are
gapped and the system becomes an AF semiconductor, as seen in Figs. 4(e)-(h). Finally, for nl|[100],
the spin-orbit gap is nearly but not fully closed at the I'X DP, as shown in Fig. 2(f). This ”trivial”
AF Dirac semimetal phase is reminiscent of graphene. Our calculations predict a relatively weak
magnetic anisotropy with the equilibrium easy axis along the [100]-direction. Note that the easy-axis
determination with Ejgo1;— Ejg] ~ 0.3 meV per unit cell is at the resolution limit of our computational
method. Since the DPs can appear at the Fermi level (see also the comparison of GGA and GGA+U
calculations in Fig. 2(b)), orthorhombic CuMnAs represents a realistic material candidate for observing
the topological MIT and AMR, driven by the Néel vector reorientation.

1.2 Spectral function and resistivity anisotropy in Mn;Au

In this work [2] we have elucidated the origin of the large anisotropic magnetoresostance observed in
antiferromagnetic MnoAu by performing ab initio transport calculations and by inspecting anisotropies
in the spectral function (see Fig. . A large contribution to the anisotropic magnetoresostance
originates form opening and closing of a Dirac point near the Fermi level, as predicted in our above
earlier theory work [I].
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Figure 3: Bloch spectral function calculated in Mn2Au for two orthogonal orientations of the Néel
vector; changes near the Dirac crossing are highlighted by arrows [2].
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2 Magnetic Weyl semimetal without spin-orbit coupling and strong
anomalous Hall effect in Ti2MnAl

In this work [9] we predict a magnetic Weyl semimetal in the inverse Heusler Ti2MnAl (see Fig. @),
a compensated ferrimagnet with a vanishing net magnetic moment and a Curie temperature of over
650 K. Despite the vanishing net magnetic moment, we calculate a large intrinsic anomalous Hall
effect (AHE) of about 300 S/cm. It derives from the Berry curvature distribution of the Weyl points,
which are only 14 meV away from the Fermi level and isolated from trivial bands. Different from
antiferromagnets Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt), where the AHE originates from the
non-collinear magnetic structure, the AHE in Ti2MnAl stems directly from the Weyl points and is
topologically protected. The large anomalous Hall conductivity (AHC) together with a low charge
carrier concentration should give rise to a large anomalous Hall angle. In contrast to the Co-based
ferromagnetic Heusler compounds, the Weyl nodes in Ti2MnAl do not derive from nodal lines due to
the lack of mirror symmetries in the inverse Heusler structure. Since the magnetic structure breaks
spin-rotation symmetry, the Weyl nodes are stable without spin-orbit coupling. Moreover, because of
the large separation between Weyl points of opposite topological charge, the Fermi arcs extent up to
75% of the reciprocal lattice vectors in length. This makes Ti2MnAl an excellent candidate for the
comprehensive study of magnetic Weyl semimetals. It is the first example of a material with Weyl
points and large anomalous Hall effect despite a vanishing net magnetic moment.

SOC
kw-w

Figure 4: Surface energy dispersion of Ti2MnAl along high symmetry lines and crossing one pair of
Weyl points [9].

3 Crystal time-reversal symmetry breaking and spontaneous Hall
effect in collinear antiferromagnets

3.1 Overview

Previously, the spontaneous Hall effect has been understood in terms of the time-reversal symme-
try breaking by the internal spin-structure of a ferromagnetic, non-colinear antiferromagnetic or
skyrmionic form. In this work [10] we identify an overlooked robust Hall effect mechanism arising
from collinear antiferromagnetism combined with non-magnetic atoms at non-centrosymmetric posi-
tions. We predict [10] and experimentally verify [I1] a large magnitude of this crystal Hall effect in a
room-temperature collinear antiferromagnet RuOs and catalogue, based on symmetry rules, extensive
families of material candidates. We show that the crystal Hall effect is accompanied by the possibility
to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization
density distribution instead of the simplified spin-structure sheds new light on symmetry breaking phe-
nomena in complex magnets and opens an alternative avenue towards quantum materials engineering
for low-dissipation nanoelectronics.
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The spontaneous Hall voltage arises when the electrons gain transverse velocity due to certain
internal magnetic structures. The associated Hall conductivity is the antisymmetric dissipationless
part of the conductivity tensor, which corresponds to the Hall pseudovector o that determines the
Hall current [12}, 13]:

ju=o0 xE. (1)

Here E is the applied electric field, o = (0., 042, 0ys), 045 are the antisymmetric Hall conductivity
components, and jy is the Hall current transverse to E and o. Apart from being odd under time-
reversal (7), Eq. explicitly highlights that the Hall effect transforms like a pseudovector under
spatial symmetry operations, i.e., it transforms like a magnetic dipole moment. This implies that the
spontaneous Hall effect (in the absence of an external field) can occur only in materials with a magnetic
space group (MSG) in which a net magnetic moment is allowed by symmetry [14], 12 [I5] 16, 17]. In
fact, since the linear-response o is invariant under the spatial inversion (P), its components allowed
by symmetry can be determined from the magnetic Laue group (MLG) [14], 12, [15]. In this work [10],
we go beyond the mere MLG symmetry requirements on the spontaneous Hall effect by focusing on its
microscopic physical mechanisms and chemistry of favourable material candidates, on the magnitude
and means to control and detect the effect, and on links to the electronic structure topology.
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Figure 5: Anomalous vs crystal Hall effect and corresponding magnetization isosurfaces.
(A) Anomalous Hall effect due to a Hall vector (o) generated by the non-collinear antiferromagnetic
order (purple arrows) in Mnslr (Mn: dark spheres, Ir: grey spheres). Mn and Ir atoms occupy
centrosymmetric sites. The conventional symmetry breaking mechanism in anomalous Hall effect in
ferromagnets (B) (m marks the magnetization vector) or non-collinear antiferromagnets (C) can be
captured by the spin structure of the magnetic ions only (black arrows). (D) Crystal Hall effect
generated by collinear antiferromagnetism (black arrows) and arrangement of non-magnetic atoms.
(Ru: light brown spheres, O: red spheres). While the crystal has inversion centre at the magnetic
Ru atom, the non-magnetic O atoms are at non-centrosymmetric positions. (E) In the case of the
crystal Hall antiferromagnet, the complete magnetization density shape is required to capture the
spontaneous symmetry breaking. In panels (B, C, E) we illustrate magnetisation density isosurfaces
with projection along the [100] direction.
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In the conventional microscopic mechanism of the spontaneous Hall effect in ferromagnets, the
asymmetry of left-right deflected electrons is induced by the combined effect of ferromagnetic spin-
polarization and spin-orbit coupling (SOC) [12]. This mechanism is commonly referred to as the
anomalous Hall effect (AHE). Here the ferromagnetic polarization breaks the 7 symmetry, while SOC
adds breaking of the invariance under spin rotation which, if the invariance was present, would make the
AHE vanish as the invariance under 7 [16]. This required symmetry breaking and associated emergent
magnetic Berry curvature can arise also due to certain non-collinear antiferromagnetic structures
instead of ferromagnetic moments, as predicted for Mnslr [I8, [19] whose magnetic lattice is shown
in Fig. 5A. Large AHE conductivities were experimentally reported in related coplanar non-collinear
compensated antiferromagnets MnzSn [20], MnzGe [21I], and MnsPt [22]. The non-relativistic AHE
counterpart - the topological Hall effect can occur when in the breaking of the spin-rotation invariance
the SOC is replaced by a non-coplanar spin structure as shown in certain spin-liquid candidates [23],
non-coplanar antiferromagnets [24], or skyrmions [25].

The formal MLG symmetry analysis of the spontaneous Hall effect has not led, over the five decades
since its original report [14], to the identification of a suitable material candidate with collinear anti-
ferromagnetic order. Focusing on the spin vectors and spatial configurations of magnetic atoms [16],
as illustrated in Figs. 5B,C, has even resulted in a general expectation of a vanishing spontaneous
Hall effect in collinear antiferromagnets [24, 26] [16], 27]. Indeed, antiferromagnets with 7 symmetry in
the MLG are excluded from having the spontaneous Hall effect. Examples encompass collinear anti-
ferromagnets that have a symmetry termed here Taor combining 7 and another symmetry operation,
as for instance CuMnAs [I] (7Tar = PT), or GdPtBi [28] (Tar = t%T, where t1 is a half-unit cell

translation).

The breaking of the 7 symmetry in the MLG by the spin structure of ferromagnets or the non-
collinear magnetic systems has been at the heart of all the above Hall effect considerations. In this
work [10], we introduce an alternative relativistic spontaneous Hall mechanism. Here the simplified
magnetic structure alone, represented by the spin vectors and spatial configurations of magnetic atoms,
generates no spontaneous Hall conductivity. The required asymmetry is generated only when including
additional atoms at non-centrosymmetric sites which can be non-magnetic. Our mechanism is demon-
strated on the collinear antiferromagnet RuOg shown in Fig. 5D. Here the crystal arrangement of
oxygen atoms results in the asymmetry of magnetization density on the opposite Ru spin-sublattices,
as illustrated in Fig. 5E, which breaks Tar. This shows that while the symmetry breaking mechanism
in ferromagnets or non-collinear antiferromagnets can be captured by drawing magnetic ordering as
spin-projection vectors only, placed on the magnetic atom sites (Figs. 5B,C), this common approach
is incomplete in general. On the example of a collinear antiferromagnetic order, we illustrate that the
detailed shape of the magnetization density needs to be considered, otherwise important families of
magnets are omitted.

A specific consequence of our crystal symmetry breaking mechanism in the context of the spon-
taneous Hall effect is flipping off the sign of the Hall coefficient when reversing the crystal chirality
by the rearrangement of the non-magnetic atoms while keeping the spin vectors and the positions of
magnetic atoms fixed. The crystal chirality thus offers an additional tool, apart from reversing the
magnetic moments, to control the sign of the Hall effect which is not available in the earlier identified
anomalous Hall effects of ferromagnets or non-collinear antiferromagnets. To highlight the unique
nature and consequences of our mechanism we introduce the term crystal Hall effect (CHE). On the
example of the collinear antiferromagnet RuOs we also illustrate that the crystal symmetry breaking
mechanism is robust, leading to large magnitudes of the CHE.

While RuOs has oxygen atoms on locally non-centrosymmetric sites, it is globally centrosymmetric.
We analyse also the CHE in the quasi-two-dimensional antiferromagnet [27] CoNb3Sg which is globally
non-centrosymmetric. We catalogue all possible magnetic symmetries hosting the CHE in collinear
antiferromagnets and a number of material candidates. Finally, we discuss the relevance of the CHE
for earlier inconclusive interpretations of Hall measurements |27, [29] in the above mentioned CoNbsSg
and in the Ce-doped canted antiferromagnet CaMnQOs3.
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3.2 Crystal symmetry breaking mechanism in a collinear antiferromagnet

We now describe the 7 symmetry breaking due to the complex asymmetric magnetization density in
collinear antiferromagnets, emphasizing the distinct nature of the CHE from the usual AHE mecha-
nism. The anomalous Hall conductivity in IrMns and similar materials is generated by the symmetry
lowering due to the nontrivial non-collinear antiferromagnetic order [I6]. The magnetization densities
are locally highly symmetric as illustrated in Fig. 5C, and the 7 symmetry is broken in the MLG by
the mutual non-collinearity of the spin-projection vectors on the magnetic sites. The Fermi surfaces
exhibit non-collinear spin textures in the crystal momentum space and spin is not a good quantum
number even without SOC. Ir Wyckoff positions are centrosymmetric and the MSG does not depend
on their presence or absence in the IrMnj crystal. This justifies neglecting the non-magnetic atoms in
this class of crystals and analysing only the magnetic spin-structure [16]. The SOC lifts the degeneracy
between two magnetic states connected by spin reversals and translates the symmetry breaking into
the orbital sector, similarly as in the ferromagnetic AHE [16].
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Figure 6: Crystal symmetry breaking, large spin split Fermi surface, and Berry curvature

in collinear antiferromagnet RuOs. (A) Collinear antiferromagnet with effective time-reversal

symmetry 7ti. (B) Left: the unit cell of antiferromagnetic RuO2 with the Néel vector along the
2

[100]-axis and marked crystal symmetries. Right: detail of the generation of the local crystal chirality
by non-centrosymmetric oxygen atoms xffg ~dgo X dop. (C) Antiferromagnetic Fermi surface cut
at wavevector k, = 0 calculated without spin-orbit coupling. The spin up and down projections are
coloured in red and blue. (D) Calculations with spin-orbit coupling of crystal momentum resolved

Berry curvature (kg ky,0) in atomic units.

From this perspective, the two-site collinear antiferromagnet, as shown in Fig. 6A, is trivial since
it cannot generate any Hall signal due to the Tar symmetry. However, by interlacing the magnetic
lattice by the non-magnetic atoms distributed at non-centrosymmetric positions, we can break the
Tar symmetry, as we show in Figs. 5D,E and in Fig. 6B on the rutile antiferromagnet RuOs. For
the collinear antiferromagnetism with quantization axis along the [100] direction, the system acquires
MSG Pn/n'm (Type-III), magnetic point group (MPG) m/m/m, and MLG 2'2'2. The symmetry
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generators are P, glide mirror plane Myt (t = (%, 5, 5)) marked in Fig. 6B, and antiunitary rotation

TCs, and they do not change when we cant the perfectly antiparallel magnetic moments towards
the [010] direction. This illustrates the ferromagnetic nature of the symmetry groups even in a fully
compensated antiferromagnetic state with the Hall vector o = (0, 0,2, 0).

In Figs. 6C,D we illustrate the microscopic mechanism which generates a non-zero Berry curva-
ture with collinear antiferromagnetism. In the non-magnetic state, the bands are Kramers degenerate
due to the P and T symmetries [I] of the rutile crystal. When we introduce the collinear antiferro-
magnetic order, the distribution of oxygen atoms deforms the magnetization densities around the Ru
sublattices, as we show in Fig. 5E. The magnetization density explicitly illustrates breaking of the Tar
symmetry for a generic crystal momentum k. However, the effective symmetry comprising of rotating
the magnetization densities (oxygen octahedra) by 90 degrees around each Ru atom in combination
with half-unit cell translation enforces the two Ru atoms to be in the antiferromagnetic spin state. In
turn, the integrated even-in-magnetization quantities such as the density of states (DOS) when SOC
is switched-off remain perfectly compensated.

Remarkably, the energy bands are strongly spin-split for a generic k, even when the relativistic SOC
is switched-off in the density functional theory (DFT) calculation — see red/blue-coloured bands in
Fig. 6C. In contrast to the non-collinear antiferromagnets, spin is a good quantum number here in the
absence of SOC. When the relativistic corrections are switched on, the local non-cetrosymmetricity
also generates ASOC ~ k x VV - s, which additionally lowers the symmetry. The resulting band
structure is locally spin-polarized, spin mixed, and generates the required asymmetry between left
and right moving electrons as can be seen on large Berry curvature hotspots around the additional
spin-splittings in Fermi surface bands shown in Fig. 6D. Note that the net moment generated by the
Dzyaloshinskii-Moriya interaction (DMI) is known to be a relativistic effect of a small magnitude [30].
In contrast, our calculations demonstrate that the spin-symmetry breaking is not a small correction
but a strong effect reflected in large magnitudes of the CHE.

We calculate the intrinsic Hall conductivity (independent of disorder-scattering) by integrating the
Berry curvature, Q(k) = —Im(dxu(k)| x |Oku(k)), in the crystal momentum space (see Methods). In
Fig. S3 we show that the non-vanishing integral component [ dk,€y,(k) is even in k, as we expect
from the symmetry analysis, while the M,,, P and TCs, symmetries imply that [ dk,Q,(k) = 0, and
My, and TCa. M, yield [ dk.Q.(k) =0. We obtain o,, = 35.7 Scm™!, demonstrating a large crystal
Hall conductivity in stoichiometric RuO3. The DFT calculations of the CHE are extensively discussed
below.

3.3 Crystal chirality control of the Hall conductivity

We now demonstrate the possibility to control the Hall conductivity sign by swapping the crystal
chirality. In Figs. 7A, B we show the RuOs crystal with the two possible distributions of the oxygen
atoms corresponding to the opposite crystal chiralities x'©) = +£1. While the MSG is the same in
both cases, the local magnetization densities, obtained from the DFT calculations, are rotated by 90
degrees [31]. In Fig. 7C we plot the energy bands corresponding to the crystal in Fig. 7TA. The red
and blue arrows mark spin up and down projection for the bands calculated without SOC. When we
include the SOC we obtain additional splittings of the bands and large Berry curvature, as we show in
Figs. 6D and 7D. The red and blue colours correspond to the opposite local chirality crystals shown
in Figs. TA, B.

The flipping of the sign of CHE o,, with the Néel vector reversal is consistent with the Onsager
relations. The two crystals in Figs. 7TA, B can be mapped on each other by the T operation combined
with a half-unit cell translation and this symmetry ensures the same magnitude, while opposite sign,
of 0, for the two crystal chiralities.
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Figure 7:  Crystal chirality control of Hall conductivity sign. (A), (B) View along the
tetragonal crystal axis on the RuOs crystal with two possible configurations of non-magnetic oxygen
atoms. Redistribution of the oxygen atoms does not change the magnetic symmetry of the crystal,
however, it changes the local crystal chirality orientation x(¢) and rotates by 90° the shape of the
magnetization density isosurfaces. (C) Calculated energy bands in the RuOs antiferromagnet without
spin-orbit coupling (red and blue bands correspond to the opposite spin-projections), and with spin-
orbit coupling (black bands). (D) The largest contribution to the Berry curvature © originates from
the spin-split bands by the spin-orbit coupling. The red and blue colour corresponds to the two
opposite crystal chiralities x(©) and demonstrates the expected Berry curvature sign change (compare
to panels (A) and (B)).

3.4 Crystal Hall phenomenology in RuO,, CoNb3Sg, and other collinear antifer-
romagnets

In Fig. 8A we identify a sizable CHE conductivity in the room temperature collinear antiferromagnet
RuOs by our first-principle calculations. Note that among the rutile antiferromagnets, a metallic phase
is rare which makes the recently discovered [32), [33] itinerant antiferromagnetism in RuOg exceptional
within this family of simple collinear antiferromagnets. Our DFT calculations show that for a medium
strength Hubbard parameter (U ~ 1—3 eV), antiferromagnetism and metallic density of states (DOS)
coexist, consistent with previous reports [32] [33]. We set in all plots in the main text U ~ 2 eV, which
reproduces best the experimental antiferromagnetic moments.

When turning the sizable SOC off in our DFT calculation, we observe a perfect antiferromagnetic
compensation in the Ru-projected DOS. With the large atomic SOC turned on, only minute corrections
to the DOS occur, as shown in Fig. 8B. They result in a small net magnetic moment, m = m4+mp, of
a magnitude ~ 0.05 up due to the DMI [30]. Here m 4 /B are magnetizations of the antiferromagnetic
A and B sublattices. In comparison, the Néel vector n = (m4 — mp)/2 has a magnitude ~ 1.17 pug.

To gain further insight, we calculate the dependence of the CHE for n || [100] on the canting angle
between magnetizations of sublattices A and B, see Fig. 8A. Furthermore, we separate in Fig. 8A o,

10
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Figure 8: First-principle calculation of sizeable and anisotropic crystal Hall effect in
RuO;. (A) First-principle calculation of the dependence on the canting angle of the Hall conductivity
and its separation into the anomalous (ferromagnetic) and crystal (antiferromagnetic) parts. (B)
Ru sublattice A (solid) and B (dashed) projected DOSs for the Néel vector along the [100] axis.
Black solid and dotted lines show calculations with spin-orbit coupling of the DOS component for
moments projected along the [100] axis. Blue line shows the sum of sublattice DOSs for the moment
projection along the [010] axis which corresponds to the small canting of the antiparallel moments due
to Dzyaloshinskii-Moriya interaction. (C) The dependence on the canting angle of the spin component
Sz (projected on single Ru sublattice A), S, (total net spin moment) and orbital magnetization L.
(D) Energy dependence of the calculated crystal Hall conductivity for n || [100] (red solid line) and
n || [110] (gray dashed line). (E) The mutual orientation of the Néel vector n, and Hall vector o. (F)
Two magnetic domains with opposite Néel vector induced by opposite field H and the corresponding
energy costs for canting. H || [010] corresponds to canting angles ¢ > 0 and prefers n || [100] (red)
over n || [100] (blue). In the inset we depict four combinations of the local crystal chirality and Néel
vector orientations. The two combinations marked L and R have the lowest energy.

into a contribution even in m:

USZHE = [032(n, m) + 04 (n, —m)]/2, (2)
and odd in m:

oot = [042(n,m) — 04 (n, —m)] /2. 3)
Here 02HF corresponds to a contribution induced by the small net moment, analogous to the AHE

in ferromagnets. We see that this term is roughly linear in m (see Figs. 8A and 8C), at least for
19| < 10°, while 0SHF is almost constant at small ¢ and dominates the contribution to o,,. Hence the
small net magnetic moment has a negligible effect on ¢,,. This is in striking contrast to the recently
studied antiferromagnets GdPtBi [28] and EuTiOg [34], which order in a T -invariant MLG and whose
observed AHE is entirely due to the canting induced by an applied external magnetic field.

In Fig. 8D we plot the intrinsic crystal Hall conductivity for the Néel vector orientation along [100]

and [110] crystal axies as a function of the Fermi level position which simulates, e.g., off-stoichiometry
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or alloying with other elements. For artificially constrained perfectly antiparallel spin moments along
the [100] axis, o || [010] and we obtain o,, = 36.4 Scm~! for stoichiometric RuOz. For a canting
angle ~ 1° obtained from the DFT calculation, m || [010] and 0., = 35.7 Sem™!. For the Néel vector
along the [110] axis, oy = 54.6 Scm~!. These crystal Hall conductivities are comparable to the large
anomalous Hall conductivities in non-collinear antiferromagnets MnzSn (100 Sem ™! in experiment[20]
and 133 Sem~! in theory[35]) or MngPt (74 Sem™! in experiment and 57 Sem™! in theory [22]), and
are much larger than the topological Hall conductivities in antiferromagnetic spin liquid candidates
(<5 Sem~! [23]). For Fermi level shifts of &~ —0.5 eV, corresponding to a reduced filling by one electron
in off-stoichiometric Ruj44Os., the CHE conductivity can be as large as ~ 300 Scm™'. At larger
energy shifts (= —1 eV) even ~ 1000 Scm~! is reached. This is similar to the record magnitudes
reported for the AHE in ferromagnets or non-collinear antiferromagnets [12, 21].

The CHE can also show a large anisotropy in the Hall conductivity which can be understood in
terms of the symmetry imposed dependence of the hybridization of linear band crossings and of the
gapping of nodal-line features [36] on the Néel vector orientation [I]. For example, the MSG changes
from Pnn'm/ for n || [100] to Cnn'm’ for n || [110].

We observe that DMI generates a small magnetization that is perpendicular to the Néel vector
when n || [100] while, for n || [110], it generates a small parallel magnetization. While in the former
case the Hall vector is perpendicular to the Néel vector, in the latter case the two vectors are parallel as
we schematically illustrate in Fig. 8E. Also, from Figs. 8A, C we see that the crystal Hall conductivity
is proportional to neither spin nor orbital magnetization and, for a generic angle of the Néel vector,
the mutual orientation of the Néel and Hall vectors is arbitrary and depends on microscopic details.

The sign of the Hall conductivity can be controlled also by the global crystal chirality. We explain
this on the CoNbsSg crystal (its low-symmetry magnetization isosurfaces are shown in Fig. 9A), a
quasi-2d hexagonal collinear antiferromagnet derived from the Van der Waals crystal of transition
metal dichalcogenide NbSy [27]. The opposite sign of crystal Hall conductivity, shown in Figs. 9B, C,
corresponds to the two crystals with the opposite sense of the spatial inversion symmetry breaking,
marked L and R in Fig. 9B.

CoNb3Sg, with collinear antiferromagnetic moments, has the €222y MSG and the same MLG as
RuO; (2'2'2), where the unprimed rotational axis Cs is perpendicular to the hexagonal layers and o ||
ac, (according to our classification in Tab. 1). However, the global P symmetry breaking promotes the
role of ASOC, as we show in Fig. 9D, where the bands are split along the high symmetry axes, not only
at high symmetry points. The energy bands, e.g. around the H point, are substantially split by the
ASOC and in combination with collinear antiferromagnetism, a large Berry curvature €1, is generated
as we illustrate on the Berry curvature summed up to the lowest energy band shown in Fig. 9D.
The Berry curvature appears to be concentrated around these antiferromagnetic generalisations of
Kramers-Weyl-like dispersions [37].

We note that the spontaneous Hall effect recently detected in CoNbsSg [27] could not be recon-
ciled with a collinear antiferromagnetic order inferred from neutron scattering. Our first-principles
calculations shown in Fig. 9C give a magnitude of the CHE in hole-doped (Fermi energy ~ —0.7 eV)
CoNb3Sg which is consistent with the experimental value for this doping level- (27 S/cm [27]).

While the symmetry allowed direction of the Hall vector o depends only on the MLG, the possibility
to control the sign of the CHE by the local or global crystal chirality depends on the full MPG. To
enumerate all possible symmetries allowing for the CHE in collinear antiferromagnets we start by
excluding antiferromagnetic symmetries incompatible with the existence of a Hall vector. Among those
are all MSG-type-IV antiferromagnets with Tap = t %7' symmetry (t 1 is half-unit cell translation as
e.g. in GdPtBi), and MSG-type-III antiferromagnets Tap = P7T symmetry (e.g. CuMnAs, or MnaAu)
which have the 7 symmetry in the MLG. In total, 275 MSGs, 31 MPGs, and 10 MLGs of type I and
III remain as candidates for spontaneous Hall effects. However, simple collinear antiferromagnetism
is not compatible with 3-fold, 4-fold, and 6-fold rotational symmetries. We summarize in Tab. 1 the
remaining 12 MPGs and 4 MLGs that may host the CHE in collinear antiferromagnets.

We can formulate simple rules allowing for a fast determination of the orientation of the Hall vector
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Figure 9: Crystal Hall conductivity in the chiral crystal of CoNb3Sg antiferromagnet.
(A) Calculated magnetization isosurfaces in the CoNbsSg antiferromagnet exhibit low symmetry and
illustrate the global chiral symmetry breaking. (B) The crystal of the CoNb3Sg antiferromagnet (”L”,
with a left-handed chirality) and its mirror m image (" R”, with a right-handed chirality). Note that the
mirror m maps the two chiralities onto each other by redistributing the non-magnetic S atoms, while
preserving the magnetic atom positions and orientations of the colllinear antiferromagnetic moments.
(C) The calculated crystal Hall conductivity (left axis) changes sign when the crystal chirality is
reversed from left- to right-handed. The right axis corresponds to the calculated dependence of the
electron filling on energy. (D) Band structure detail of antiferromagnetic CoNbsSg without (black
line) and with (red line) spin-orbit coupling. We show fraction of the LH A path in Brillouin zone.

o based on the existence of these only 4 MLGs. (i) In MLG 1 the orientation of o is arbitrary and
depends on microscopic details of the electronic structure. (ii) In systems with 2’ rotational axis the
Hall vector is perpendicular to the axis and the orientation within this plane is set microscopically.
(iii) The 2 fold rotational axis constrains the Hall vector to be parallel to this axis (see Fig. 5A and
9B) and the orientation of the Hall vector is determined uniquely by the symmetry. All the remaining
possibilities can be derived from these three cases (for instance in 2’2’2 the Hall vector is perpendicular
to both 2’ and parallel to 2).

We point out that as many as ~ 10% of the total of ~ 700 magnetic structures reported in the
Bilbao MagnData database [38] belong to the class of collinear antiferromagnets in which the CHE
is allowed by symmetry. We point out that our CHE mechanism will materialize in these candidates
possibly also in its optical or thermal variants. In Tab. 1 we list some additional material candidate
examples such as orthoferrites, perovskites, or corundum structure materials.

The CHE might also contribute to Hall signals which were earlier taken as a signature of nontrivial
and topological magnetization textures. This applies, e.g., to the measured spontaneous Hall signal
in a Ce-doped canted antiferromagnet CaMnOs (MPG 2'/m’) [29]. Apart from the AHE contribution
due to the net magnetic moment, our symmetry analysis shows that the CHE associated with the
Néel vector, rather than the canting moment (cf. Figs. 8A, C) is allowed in this material due to the
oxygen non-centrosymmetric positions. The spikes arising in the Hall signal by applying a magnetic
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field can be alternatively explained as a convolution of two spontaneous Hall signals from material
regions with the opposite Hall sign [39]. These two regions might correspond to the two crystallites
with the opposite sign of the CHE. Furthermore, methods for growing single-crystal-chirality systems
can be used to enhance the Hall signal.

Finally, we remark that existing mechanisms of the quantum spontaneous Hall effect rely either
on rare ferromagnetic insulators or on fragile diluted magnetic topological insulators with low crit-
ical temperatures and small magnetic band-gaps [40]. Our crystal spontaneous symmetry breaking
represents a long-sought mechanism marrying strong Hall response with a robust room-temperature
intrinsic collinear antiferromagnetism.

Centrosymmetric ~ Non-centrosymmetric

MLG MPG o MPG o Material Tensor
B Oxx Ogy Oxz
1 1 arb. 1 arb. Fes O3 Oyz Oyy Oy
Oxz Ozy Ozz
o 0 o
2 2/m 2 = BiCrOs 0 o 0
L vy
M m 1 M oe. 0 0.
o o o
1 aye 20 1 arc T xry xrz
2/ 2'/m/ 2 —_— CaMnO3 [29] —Ozy  Oyy Oy
eTM m  eTM Omy —Oys On
0
222 m'm'2  ||ag,  RuO, [33] Owz Oy
2/9/9 1ot H ac, 2 2 _
e M., m'm?2’ 1 M,  CoNbsSg [27] gmy Ué’y aO
zZ

Table 1: Catalogue of Hall-vector admissible magnetic point groups in collinear antiferromagnets and
selected material candidates. First two rows list Type-I and last two rows Type-III magnetic point
groups (MPGs), respectively. We list more material candidates and all magnetic symmetries allowing
any Hall signal in SM Tab. S2. If not referenced otherwise, the material candidate was obtained from
the MagnData database [38]. MLG marks the magnetic Laue group.

3.5 Experimental observation of the crystal Hall effect in RuO,

To experimentally verify the crystal Hall effect, we used in this work [I1] high-quality epitaxial thin
films of RuO2 on MgO single-crystal substrates. The Hall measurements conducted up to 50 T that
was applied along the out-of-plane direction of thin film samples in a pulsed high magnetic field setup
demonstrated a clear anomalous Hall effect at all temperatures ranging from 10 to 300 K. The Hall
data are shown in Figs. 10A,B and exhibit an anomalous signal, i.e., the departure from ordinary Hall
effect linear in magnetic field. This signal is consistent with the crystal Hall mechanism. Considering
the saturation crystal Hall resistivity pcpr and the transverse resistivity p (Fig. 10C) of the RuO,
film at different temperatures, the magnitude of the anomalous Hall conductivity estimated from
locur| ~ pcur/p? is plotted as a function of temperature in Fig. 10D. Due to the highly metallic
nature of the RuOs film, |ocyg| is rather large at low temperatures. It reaches 331 S/cm, which is
over three times that of non-collinear antiferromagnet MnsSn and even on the same order with the
anomalous Hall conductivity of Fe thin films. Above 50 K, |ocug| is greatly lowered by increasing
temperature and decreases to ~ 3.2 S/cm at room temperature.

Compared with RuOs films grown on MgO, RuO2 films deposited onto SrTiOjs single-crystal
substrates in the same optimized conditions are highly ordered as well but (100)-oriented (Fig. 10E).
Intriguingly, the Hall effect along the RuO2[100] direction is predominantly linear up to 50 T for all
the temperatures between 10 and 300 K (Fig. 10F). The fitted carrier density n is 3.28 x 10?3 cm ™3 at
300 K and decreases to 1.36 x 10?2 cm ™2 at 10 K through a slighter carrier freeze-out effect compared
with the (110)-oriented RuO2/MgO heterostructure.

14



ASPIN

Work package 3

Deliverable 3.2

a —or ] Poos ¢
02l 80 K 150 K
300 K 60}
g g 0.03 ’g
o [} o
% 0.0 % 0.00 gi
;r“ 3 Q40
2-0.03
0.2}
. . . . 0.06f . . \ 20
-50  -25 0 25 50 50 25 0 25 50 0 100 200 300
HoH (T) 1H (T) T (K)
d e S0, f — 10K
=@ - AHC along RuO,[110] 002) 0.2 30K
—~3F ' 50 K
T — 70K
& . © [(001) (200) SITiO, % . —_ §$E
S 2 (003)  RuO, 200
(7]
< 5 3
mpnl = <o Along RuO,[100]
<
S
> -0.2
0k

0 100 200 20

T(K)

300

60 80
20(degree)

40

100

Figure 10: Hall effect along the out-of-plane direction of RuO2 thin films. (A)-(B), Hall effect up to 50
T measured for the (110)-oriented RuO2/MgO heterostructure at 10, 80, 150 and 300 K, respectively.
(C) Resistivity versus temperature for the RuO2/MgO heterostructure. (D) The magnitude of anoma-
lous Hall conductivity as a function of temperature for the RuO2/MgO heterostructure. (E) X-ray
diffraction spectrum of a RuO2/SrTiO3 heterostructure, indicating a highly ordered (100) orientation
of the RuO2 film. (F) Hall effect of the (100)-oriented RuO2/SrTiO3 heterostructure up to 50 T at
different temperatures ranging from 10 to 300 K.
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